Orientation of the Geometrically Best fitting Triaxial Lunar Ellipsoid with Respect to the Mean Earth/Polar Axis Reference Frame
نویسندگان
چکیده
This study provides new estimates for the orientation of a geometrically best fitting lunar triaxial ellipsoid with respect to the mean Earth/polar axis reference frame calculated from the footprint positions of the Chang'E-1 (CE-1), SELenological and ENgineering Explorer (SELENE) laser altimetry measurements and Unified Lunar Control Networks 2005, (ULCN 2005) station coordinates. The semi-principal axes of the triaxial ellipsoid and the coordinates of its geometric center are also calculated simultaneously. All the estimated parameters from all three data sets are found to be consistent. In particular, the RMS differences of the semi-principal axes of the triaxial ellipsoids and the locations of their geometric centers from solutions with and without modeling Euler angles (orientation of the triaxial ellipsoid) using uniformly distributed laser altimetry (LAL) footprints are 29 and 31 m respectively. The misclosures of all the solutions indicate a better fit for the triaxial ellipsoid to the footprint and station coordinates if the Euler angles are included in the models.
منابع مشابه
Lunar Laser Ranging Contributions to Relativity and Geodesy
Lunar laser ranging (LLR) is used to conduct high-precision measurements of ranges between an observatory on Earth and a laser retro-reflector on the lunar surface. Over the years, LLR has benefited from a number of improvements both in observing technology and data modeling, which led to the current accuracy of post-fit residuals of ∼ 2 cm. Today LLR is a primary technique to study the dynamic...
متن کاملPotential Capabilities of Lunar Laser Ranging for Geodesy and Relativity
Lunar Laser Ranging (LLR), which has been carried out for more than 35 years, is used to determine many parameters within the Earth-Moon system. This includes coordinates of terrestrial ranging stations and that of lunar retro-reflectors, as well as lunar orbit, gravity field, and its tidal acceleration. LLR data analysis also performs a number of gravitational physics experiments such as test ...
متن کاملOn the Adoption of a Terrestrial Reference Frame
The report of the IAU Working Group on Nutation endorsed by Commissions 4, 8, 19 and 31 at the 1979 General Assembly points out that "... the complete theory of the general nutational motion of the Earth about its center of mass may be described by the sum of two components, astronomical nutation, commonly referred to as nutation, which is nutation with respect to a space-fixed coordinate syste...
متن کاملReference Ellipsoid and Geoid in Chronometric Geodesy
Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid’s undulation (hei...
متن کاملAccuracy improvement of Best Scanline Search Algorithms for Object to Image Transformation of Linear Pushbroom Imagery
Unlike the frame type images, back-projection of ground points onto the 2D image space is not a straightforward process for the linear pushbroom imagery. In this type of images, best scanline search problem complicates image processing using Collinearity equation from computational point of view in order to achieve reliable exterior orientation parameters. In recent years, new best scanline sea...
متن کامل